• HOME
  • YEAR 9
    • Assessment System
    • Inheritance
    • Plants >
      • Kitchen Garden Project
    • Acids and Alkalis
    • Energetic Reactions
    • Energy Resources
    • Mechanics
    • Environmental Science
  • IGCSE
    • Forces and Motion
    • Energy and Energy Resources
    • Solids, Liquids and Gases
    • Waves
    • Astrophysics
    • Electricity
    • Magnetism
    • Nuclear Physics
    • IGCSE revision
  • Physics I
    • Kinematics >
      • Variables and Units
      • Describing Motion
      • Equations of Motion
      • Problem Solving
      • Projectiles
      • Kinematics Animations
    • Dynamics >
      • Forces
      • Static Equilibrium
      • Newton's Laws
      • Friction
      • Advanced Problems
    • Gravitation and Orbits >
      • Circular Motion
      • Vertical Circles
      • Universal Gravitation
      • Orbits
      • Circular Motion Animation
    • Energy >
      • Work
      • Springs
      • PE and KE
      • Conservation of Energy
      • Work-Energy Theorem
    • Linear Momentum >
      • Impulse
      • Conservation of Momentum
      • Types of Collision
      • 2-D Collisions
    • Simple Harmonic Motion >
      • Mass on Spring
      • Pendulums
      • SHM Animations
    • Rotational Mechanics >
      • Torque
      • Rotational Kinematics
      • Rotational Dynamics
      • Angular Momentum
      • Rotational Energy
    • Mechanical Waves >
      • Waves on a String
      • Sound
    • AP-1 Revision
    • AP Physics C (Mechanics)
  • Physics II
    • Fluid Mechanics
    • Thermal Physics
    • Electrostatics
    • Magnetic Fields >
      • EM Induction
    • Interference and Diffraction
    • Optics
    • Modern Physics
    • AP 2 Revision
  • OCEANOGRAPHY
    • The World Ocean >
      • What is Oceanography
      • History
      • Lat and Long
      • Size and Origin
      • Plate Tectonics
    • Seawater >
      • A Salty Sea
      • Measuring Salinity
      • Thermal Properties
      • Density Profiles
      • Drinking Seawater
    • Circulation and Climate >
      • Global Heating
      • Coriolis Effect
      • Surface Currents
      • Vertical Motion
      • Thermohaline Circulation
      • El Nino
      • Carbon Cycle
    • Waves and Tides >
      • Wave Motion
      • Formation of Waves
      • Beaches
      • Tsunamis
      • Tides
    • Observation Systems >
      • Challenges
      • The CTD
      • Moorings
      • Sound Waves
      • Robotics
      • Satellites
    • Weather and Navigation >
      • Weather Systems
      • Weather Forecasting
      • Hurricanes
      • Navigation
      • Life at Sea
    • Oceans and Mankind >
      • Ocean Acidification
      • Pollution
      • Fish Stocks
      • Climate Change
      • Energy Resources
    • Atlantic Explorer Cruise
    • ROVs
  • COLLEGE
    • College Physics I
    • College Physics II
  • CONTACT
Island Physics

Simple Harmonic Motion

Dolphins jumping during a delivery trip across the Mediterrean.  Photo: Mark Roworth
Home >> AP Physics I >> Simple Harmonic Motion >> Pendulums
Rotational Mechanics >>

6.2 - Pendulums

A simple pendulum is a mass hanging on the end of a string that is fixed at the top so that it can swing.  The equations that model pendulums are only really valid for small angles of swing.  As the swing angle increases above 10 degrees, the equations start to become inaccurate.  The person that first noticed the constancy of the period of a pendulum was a very bored Galileo sitting in a church watching incense burners.  These must have been on very long chains as his only method of timing the swings was his pulse!  The energy changes that occur here have been met before: gravitational potential energy to kinetic energy.  The height involved is the vertical height of the swing, not the arc length.  Galileo realised that the amplitude of swing had no effect on the period - and hence discovered the principle that governed the first really accurate clocks.

The variables that govern the period and hence frequency of a pendulum are a) the length of the pendulum and b) the gravitational field strength (usually constant).

Another important discovery is that the conservation of angular momentum means that a pendulum will continue to swing in the same plane - even if the surroundings rotate about the pivot.  This led to a scientist, called Foucault, in Paris using a huge pendulum to demonstrate the rotation of the Earth - an example of this can be seen in Boston Science museum as well as Foucault's original one in Paris.
\[​T = 2\pi \sqrt{\frac{l}{g}}\]


Picture
The energy transfers for a simple pendulum.  Image from google....
Picture
Image from "How to build a Foucault Pendulum" - click to lead to the website.

Rotational Mechanics >>

Other Resources

PhysClips Animation and Guide
Picture
Animation
  • HOME
  • YEAR 9
    • Assessment System
    • Inheritance
    • Plants >
      • Kitchen Garden Project
    • Acids and Alkalis
    • Energetic Reactions
    • Energy Resources
    • Mechanics
    • Environmental Science
  • IGCSE
    • Forces and Motion
    • Energy and Energy Resources
    • Solids, Liquids and Gases
    • Waves
    • Astrophysics
    • Electricity
    • Magnetism
    • Nuclear Physics
    • IGCSE revision
  • Physics I
    • Kinematics >
      • Variables and Units
      • Describing Motion
      • Equations of Motion
      • Problem Solving
      • Projectiles
      • Kinematics Animations
    • Dynamics >
      • Forces
      • Static Equilibrium
      • Newton's Laws
      • Friction
      • Advanced Problems
    • Gravitation and Orbits >
      • Circular Motion
      • Vertical Circles
      • Universal Gravitation
      • Orbits
      • Circular Motion Animation
    • Energy >
      • Work
      • Springs
      • PE and KE
      • Conservation of Energy
      • Work-Energy Theorem
    • Linear Momentum >
      • Impulse
      • Conservation of Momentum
      • Types of Collision
      • 2-D Collisions
    • Simple Harmonic Motion >
      • Mass on Spring
      • Pendulums
      • SHM Animations
    • Rotational Mechanics >
      • Torque
      • Rotational Kinematics
      • Rotational Dynamics
      • Angular Momentum
      • Rotational Energy
    • Mechanical Waves >
      • Waves on a String
      • Sound
    • AP-1 Revision
    • AP Physics C (Mechanics)
  • Physics II
    • Fluid Mechanics
    • Thermal Physics
    • Electrostatics
    • Magnetic Fields >
      • EM Induction
    • Interference and Diffraction
    • Optics
    • Modern Physics
    • AP 2 Revision
  • OCEANOGRAPHY
    • The World Ocean >
      • What is Oceanography
      • History
      • Lat and Long
      • Size and Origin
      • Plate Tectonics
    • Seawater >
      • A Salty Sea
      • Measuring Salinity
      • Thermal Properties
      • Density Profiles
      • Drinking Seawater
    • Circulation and Climate >
      • Global Heating
      • Coriolis Effect
      • Surface Currents
      • Vertical Motion
      • Thermohaline Circulation
      • El Nino
      • Carbon Cycle
    • Waves and Tides >
      • Wave Motion
      • Formation of Waves
      • Beaches
      • Tsunamis
      • Tides
    • Observation Systems >
      • Challenges
      • The CTD
      • Moorings
      • Sound Waves
      • Robotics
      • Satellites
    • Weather and Navigation >
      • Weather Systems
      • Weather Forecasting
      • Hurricanes
      • Navigation
      • Life at Sea
    • Oceans and Mankind >
      • Ocean Acidification
      • Pollution
      • Fish Stocks
      • Climate Change
      • Energy Resources
    • Atlantic Explorer Cruise
    • ROVs
  • COLLEGE
    • College Physics I
    • College Physics II
  • CONTACT