• HOME
  • YEAR 9
    • Assessment System
    • Inheritance
    • Plants >
      • Kitchen Garden Project
    • Acids and Alkalis
    • Energetic Reactions
    • Energy Resources
    • Mechanics
    • Environmental Science
  • IGCSE
    • Forces and Motion
    • Energy and Energy Resources
    • Solids, Liquids and Gases
    • Waves
    • Astrophysics
    • Electricity
    • Magnetism
    • Nuclear Physics
    • IGCSE revision
  • Physics I
    • Kinematics >
      • Variables and Units
      • Describing Motion
      • Equations of Motion
      • Problem Solving
      • Projectiles
      • Kinematics Animations
    • Dynamics >
      • Forces
      • Static Equilibrium
      • Newton's Laws
      • Friction
      • Advanced Problems
    • Gravitation and Orbits >
      • Circular Motion
      • Vertical Circles
      • Universal Gravitation
      • Orbits
      • Circular Motion Animation
    • Energy >
      • Work
      • Springs
      • PE and KE
      • Conservation of Energy
      • Work-Energy Theorem
    • Linear Momentum >
      • Impulse
      • Conservation of Momentum
      • Types of Collision
      • 2-D Collisions
    • Simple Harmonic Motion >
      • Mass on Spring
      • Pendulums
      • SHM Animations
    • Rotational Mechanics >
      • Torque
      • Rotational Kinematics
      • Rotational Dynamics
      • Angular Momentum
      • Rotational Energy
    • Mechanical Waves >
      • Waves on a String
      • Sound
    • AP-1 Revision
    • AP Physics C (Mechanics)
  • Physics II
    • Fluid Mechanics
    • Thermal Physics
    • Electrostatics
    • Magnetic Fields >
      • EM Induction
    • Interference and Diffraction
    • Optics
    • Modern Physics
    • AP 2 Revision
  • OCEANOGRAPHY
    • The World Ocean >
      • What is Oceanography
      • History
      • Lat and Long
      • Size and Origin
      • Plate Tectonics
    • Seawater >
      • A Salty Sea
      • Measuring Salinity
      • Thermal Properties
      • Density Profiles
      • Drinking Seawater
    • Circulation and Climate >
      • Global Heating
      • Coriolis Effect
      • Surface Currents
      • Vertical Motion
      • Thermohaline Circulation
      • El Nino
      • Carbon Cycle
    • Waves and Tides >
      • Wave Motion
      • Formation of Waves
      • Beaches
      • Tsunamis
      • Tides
    • Observation Systems >
      • Challenges
      • The CTD
      • Moorings
      • Sound Waves
      • Robotics
      • Satellites
    • Weather and Navigation >
      • Weather Systems
      • Weather Forecasting
      • Hurricanes
      • Navigation
      • Life at Sea
    • Oceans and Mankind >
      • Ocean Acidification
      • Pollution
      • Fish Stocks
      • Climate Change
      • Energy Resources
    • Atlantic Explorer Cruise
    • ROVs
  • COLLEGE
    • College Physics I
    • College Physics II
  • CONTACT
Island Physics

DYNAMICS

Bermuda fitted dinghies racing in Granaway Deep. (Photo: Tom Clarke) 
Home >> AP Physics I >> Newton's Laws >> Advanced Problems
Gravitation and Orbits >>

2.5 - Advanced Problems

Objectives:
  • To be able to apply Newton’s Laws of Motion to solve complex problems – including forces at angles.

Blocks on slopes are really popular!  Also the examiners love to come up with unusual situations.
Example 6
A student is holding a \(4 \,\text{kg}\) block against a wall with a coefficient of friction of \(0.5\).  On inspection, the only upwards force is that of friction.
Picture
\[F_{up}=F_{down}\]
​\[f=Mg\]
\[F_{left}=F_{right}\]
​\[F=N\]
Combining the simultaneous equations with the friction equation will give:
\[f= \mu N =\mu F= Mg\]
\[F = \frac{Mg}{\mu }= \frac{40}{0.5}=80\,\text{N}\]
Example 7
What is the acceleration of a \(60 \,\text{kg}\) skier as he glides down a slope at an angle of \(25^{\circ}\) with a coefficient of friction of \(0.1\)?
Picture
Taking 'UP' as out of the slope, the skier is not accelerating in that direction.  So we can use statics.  He is accelerating along the plane of the slope, so we must use \(F=ma\) for that direction:
Along the slope ('left/right')
\[F=ma\]  \[mg\sin{(25)}-f=ma\]
Out of slope ('up/down')
\[F_{up}=F_{down}\]  \[N=mg\cos{(25)}\]
Combining these with the friction equation gives:
\[f=mg\sin \left ( 25 \right )-ma=\mu mg\cos \left ( 25 \right )\]
​\[​a = g\sin \left ( 25 \right )-\mu g\cos \left ( 25 \right )\]
\[a = 3.3\text{m/s}^{2}\]

BBC News 14 Aug 2018 - When engineers get it wrong, the Italian Bridge Collapse.

Gravitation and Orbits >>

Lab Work

There are plenty of standard lab assignments that are used in this topic.  The classics are static set ups with newtonmeters or hanging masses to demonstrate Forces up = Forces down etc, measuring the acceleration of a trolley by a falling mass to demonstrate Newton's Second Law, connected blocks and measuring the coefficients of friction .  However, at the end of the topic I like to set the students an involved project that draws together elements of this topic.

Some ideas include:
  • Investigation into the factors that affect the final speed of a block of wood pulled up a slope by a falling mass.
  • Investigation into how the angle of a slope affects the speed that a block of wood sliding downwards reaches the bottom.
  • Measuring the parallel force needed to maintain a block's equilibrium varies with angle of a slope
  • How the tension in a pair of identical strings supporting a mass vary as the included angle between them increases from 0 to 180 degrees.
  • Using a bathroom scale to measure the acceleration of the school elevator.  Compare with the accelerometer on a ipad.
  • Use the principle of statics to measure the tension in a kite string.

Other Resources

Statics Simulation
Interactive Newton's Laws Problems!
Interactive MC Questions
Picture
PhET Simulation - Ramp

Newton's Laws and Car Crashes - recommended by Morgan Kornarski of Safe Kids
Learn AP Physics - Newton's Laws
  • HOME
  • YEAR 9
    • Assessment System
    • Inheritance
    • Plants >
      • Kitchen Garden Project
    • Acids and Alkalis
    • Energetic Reactions
    • Energy Resources
    • Mechanics
    • Environmental Science
  • IGCSE
    • Forces and Motion
    • Energy and Energy Resources
    • Solids, Liquids and Gases
    • Waves
    • Astrophysics
    • Electricity
    • Magnetism
    • Nuclear Physics
    • IGCSE revision
  • Physics I
    • Kinematics >
      • Variables and Units
      • Describing Motion
      • Equations of Motion
      • Problem Solving
      • Projectiles
      • Kinematics Animations
    • Dynamics >
      • Forces
      • Static Equilibrium
      • Newton's Laws
      • Friction
      • Advanced Problems
    • Gravitation and Orbits >
      • Circular Motion
      • Vertical Circles
      • Universal Gravitation
      • Orbits
      • Circular Motion Animation
    • Energy >
      • Work
      • Springs
      • PE and KE
      • Conservation of Energy
      • Work-Energy Theorem
    • Linear Momentum >
      • Impulse
      • Conservation of Momentum
      • Types of Collision
      • 2-D Collisions
    • Simple Harmonic Motion >
      • Mass on Spring
      • Pendulums
      • SHM Animations
    • Rotational Mechanics >
      • Torque
      • Rotational Kinematics
      • Rotational Dynamics
      • Angular Momentum
      • Rotational Energy
    • Mechanical Waves >
      • Waves on a String
      • Sound
    • AP-1 Revision
    • AP Physics C (Mechanics)
  • Physics II
    • Fluid Mechanics
    • Thermal Physics
    • Electrostatics
    • Magnetic Fields >
      • EM Induction
    • Interference and Diffraction
    • Optics
    • Modern Physics
    • AP 2 Revision
  • OCEANOGRAPHY
    • The World Ocean >
      • What is Oceanography
      • History
      • Lat and Long
      • Size and Origin
      • Plate Tectonics
    • Seawater >
      • A Salty Sea
      • Measuring Salinity
      • Thermal Properties
      • Density Profiles
      • Drinking Seawater
    • Circulation and Climate >
      • Global Heating
      • Coriolis Effect
      • Surface Currents
      • Vertical Motion
      • Thermohaline Circulation
      • El Nino
      • Carbon Cycle
    • Waves and Tides >
      • Wave Motion
      • Formation of Waves
      • Beaches
      • Tsunamis
      • Tides
    • Observation Systems >
      • Challenges
      • The CTD
      • Moorings
      • Sound Waves
      • Robotics
      • Satellites
    • Weather and Navigation >
      • Weather Systems
      • Weather Forecasting
      • Hurricanes
      • Navigation
      • Life at Sea
    • Oceans and Mankind >
      • Ocean Acidification
      • Pollution
      • Fish Stocks
      • Climate Change
      • Energy Resources
    • Atlantic Explorer Cruise
    • ROVs
  • COLLEGE
    • College Physics I
    • College Physics II
  • CONTACT