\qquad

Reading (actually watching...)

Watch the YouTube video on Position, Velocity and Acceleration by Bozeman Science (can be found on website or $h t t p s: / / w w w . y o u t u b e . c o m / w a t c h ? v=m X b K I Y S E v F 8 . ~) ~$

Conceptual Question

Two students are having an argument about their bikes. Outline an experiment that you could carry out to determine which has the greatest average acceleration over the first 5 seconds. (3)
\square

Multiple Choice (1 for circling the correct answer, 1 for reasoning)
An astronaut drops a hammer and a feather on the Moon. If they both fall 6.0 m vertically in 2.7 seconds, what is the acceleration due to gravity on the Moon?
A) $1.6 \mathrm{~m} / \mathrm{s}^{2}$
B) $2.2 \mathrm{~m} / \mathrm{s}^{2}$
C) $4.4 \mathrm{~m} / \mathrm{s}^{2}$
D) $6.0 \mathrm{~m} / \mathrm{s}^{2}$
E) $10 \mathrm{~m} / \mathrm{s}^{2}$

Multiple Choice (1 for circling the correct answer, 1 for reasoning)
A bike going down a highway at $15.0 \mathrm{~m} / \mathrm{s}$ accelerates to a speed of $21.0 \mathrm{~m} / \mathrm{s}$ in 12.0 seconds. How far did the car travel in this time?
A) 36.0 m
B) 180 m
C) 216 m
D) 252 m

Free Response

A stone is thrown straight upwards at $20 \mathrm{~m} / \mathrm{s}$.
a) How high does it go? (2)
b) Someone catches the stone on the way down at a point 5.0 m above where it was thrown. How fast was it going when it was caught? (3-of which 1 mark will be for a good diagram....)

