
An angular/linear speed bicycle example
On October 1, 2003, Leontien Zijlaand-van Moorsel set a new women’s hour record by

riding a bicycle 46.065 km in one hour on the velodrome at Mexico City.
She rode a fixed gear bike which was qualitatively like this one:

radius 34cm

rear sprocket
14 teeth
radius 3cm

front sprocket

54 teeth

rear wheel

A fixed gear means that there is no freewheel: the rear sprocket is attached directly to the
rear wheel, so that if the wheel turns, the rear sprocket (and hence the front sprocket and
pedals) turns. You can’t ”coast” on such a bike. These kinds of bikes are standard in track
racing. They also have no brakes, to make it difficult to make sudden speed changes. This
improves safety in the close quarters of track racing.

Here is the question: If Leontien rode at a constant speed, how fast did she pedal? That
is, how quickly must her pedals (and feet) have been going around? In cycling, this rate is
known as the cadence.

Here’s the idea: if we know how fast the wheels turn, then we’ll know how fast the rear
sprocket turns, then we’ll know how fast the chain moves, then we’ll know how fast the front
sprocket turns, then we’ll know how fast the pedals turn.

Any wheel, sprocket, gear, etc., that turns has both an angular speed and a linear speed:
The angular speed is the rate at which the thing turns, described in units like revolutions

per minute, degrees per second, radians per hour, etc.
The linear speed is the speed at which a a point on the edge of the object travels in its

circular path around the center of the object. The units can be any usual speed units: meters
per second, miles per hour, etc.

If v represents the linear speed of a rotating object, r its radius, and ω its angular velocity in
units of radians per unit of time, then

v = rω.

This is an extremely useful formula: it related these three quantities, so that knowing two we
can always find the third.

Now, the linear speed of a wheel rolling along the ground is also the speed at which the
wheel moves along the ground. So if we assume that Leontien moved at a constant speed, then
her wheels were always moving 46.065 km/hr, or
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= 12.7958m/sec.

This is the linear speed of her wheels.



Since the rear wheel has a radius of r = 0.34 meters, the angular speed of the rear wheel is
given by

ω =
v

r

=
12.7958 m/sec

0.34 m
= 37.6347 radians/sec.

Since the rear sprocket is attached directly to the rear wheel, it rotates exactly as the rear
wheel does: every revolution of the rear wheel is a revolution of the sprocket. Hence, the
angular speed of the rear sprocket is ωrs = 37.6347 radians/sec.

Knowing that the radius of the rear sprocket is 0.03 m, we can calculate the linear speed of
the rear sprocket:

vrs = ωrsrrs = (37.6347 radians/sec)(0.03 m) = 1.12904 m/sec.

Every point in a sprocket-chain system moves at the same linear speed. Hence every point
on the chain has a (linear) speed of 1.12904 m/sec, and the front sprocket has a linear speed of
vfs = 1.12904 m/sec.

We now need the radius of the front sprocket in order to find its angular speed. We can use
the fact that the number of teeth on a sprocket must be proportional to its circumference (so,
for instance, if we double the circumference of the sprocket, we double the number of teeth).
Thus,
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rfs
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so that

rfs =
54(0.03 m)

15
= 0.108 m.

With this, we calculate the angular speed of the front sprocket:

ωfs =
vfs

rfs

=
1.12904 m/sec

0.108 m
= 10.4541 rad/sec.

Putting this into more convenient units, we have

ωfs = 1.6638 rev/sec = 99.829 rev/min = 99.829 rpm.

So Leontien was pedalling about 100 revolutions per minute.


