AP ${ }^{\oplus}$ Physics 1 2015 Scoring Guidelines

© 2015 The College Board. College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board.
Visit the College Board on the Web: www.collegeboard.org.
AP Central is the official online home for the AP Program: apcentral.collegeboard.org.

AP ${ }^{\circledR}$ PHYSICS 1
 2015 SCORING GUIDELINES

Question 1

7 points total

Distribution of points

(a) 2 points

Block 1
Block 2

For drawing two vectors starting on the dots that point upward, have the same
1 point

1 point

1 point
$m_{1} a=T-m_{1} g$
For writing an equation for Newton's second law for block 2
1 point
$m_{2} a=m_{2} g-T$
For eliminating T to obtain an equation that can be solved for the acceleration
1 point
$T=m_{1} a+m_{1} g$
$m_{2} a=m_{2} g-m_{1} a-m_{1} g$
$\left(m_{2}+m_{1}\right) a=\left(m_{2}-m_{1}\right) g$
$a=\left(m_{2}-m_{1}\right) g /\left(m_{2}+m_{1}\right)$

AP ${ }^{\circledR}$ PHYSICS 1 2015 SCORING GUIDELINES

Question 1 (continued)

(b) (continued)

Alternate solution

The system of two blocks must move as a unit, so the acceleration of the system is the acceleration of block 2.
For writing an equation showing that the net force acting on the system is the 1 point difference in masses times the acceleration of gravity
$F_{\text {net }}=\left(m_{2}-m_{1}\right) g$
For writing an equation that relates the net force to the sum of the masses and the acceleration of the system
$F_{n e t}=\left(m_{2}+m_{1}\right) a$
For writing an equation that can be solved for the acceleration in terms of the
variables used in the summation of forces equations
$\left(m_{2}+m_{1}\right) a=\left(m_{2}-m_{1}\right) g$
$a=\left(m_{2}-m_{1}\right) g /\left(m_{2}+m_{1}\right)$
(c) 2 points

The acceleration of the new system, and thus of block 2 , is smaller.
For indicating that the mass of the system is larger
1 point
For a clear indication that the tension on block 2 is greater
Alternate solution
For indicating that the mass of the system is larger
For indicating that the net force exerted on the system stays the same
1 point

Notes:
No points are earned for a correct prediction without a reasonable attempt at an explanation.
No points are earned for an incorrect prediction, regardless of the explanation.

AP ${ }^{\oplus}$ PHYSICS 1 2015 SCORING GUIDELINES

Question 2

12 points total

Distribution of points

(a) 5 points

For drawing a circuit in which the power source, resistor, and bulb are wired in series
For connecting at least one ammeter in series with the bulb 1 point
For connecting the voltmeter across the bulb in parallel
For describing measurements that can plausibly be used to answer question 1
Example: Measure the current entering and leaving the bulb with ammeters connected in series on either side of the bulb.
For describing measurements that can plausibly be used to answer question 2
Example: Measure the potential difference across the bulb with a voltmeter connected in parallel with the bulb.
The response does not need to mention multiple measurements.
(b)
(i) 1 point

For describing an analytical method of using the data, and explaining how that analytical method can be used to answer question 1
Example: If the current is the same on both sides of the bulb, then the number of electrons per second entering and leaving the bulb is the same.
(ii) 1 point

For describing an analytical method of using the data, and explaining how that

1 point

1 point
1 point

1 point

1 point

1 point

AP ${ }^{\circledR}$ PHYSICS 1 2015 SCORING GUIDELINES

Question 2 (continued)

(c)
(i) 1 point

For any of the following:

Distribution of points

Describing any changes to the circuit needed to have a setup that can plausibly be used to determine whether the bulb's resistance is constant as a function of current.
Describing changes to a circuit that are not needed but do not impair the ability to determine whether the bulb's resistance is constant as a function of current.
Correctly indicating that no changes are needed.
Example based on circuit diagram in part (a): Remove one of the ammeters.
(ii) 1 point

For describing any additional measurements needed to determine whether current varies linearly as a function of voltage, or indicating that none are needed if the appropriate multiple measurements are mentioned in part (a) or (c)(i)
Example: Measure the current through the bulb and the potential difference across the bulb for multiple settings of the power source.
(d) 3 points

For describing an analytical method in which data are represented or manipulated in some way that can plausibly be used to determine whether current varies linearly as a function of potential difference
Examples:
Graphing measurements of current as a function of potential difference Calculating the ratio of current to potential difference for multiple settings of the power source
For identifying that linearity is the relevant feature for determining whether the bulb is ohmic
Examples:
Evaluating whether a plot of current as a function of voltage is linear
Evaluating whether the ratio of current to potential difference is constant
For describing a strategy for evaluating whether the conclusion of linearity is valid

1 point

1 point

1 point for a given data set taking into account the meter uncertainties
Examples:
Drawing error boxes that represent the uncertainties of the meters around each point and evaluating whether a straight line can be drawn that goes through all the error boxes.
Indicating that small differences in the ratios could be due to uncertainty in the meters and would not discount the conclusion that the bulb is ohmic

AP ${ }^{\circledR}$ PHYSICS 1 2015 SCORING GUIDELINES

Question 3

12 points total
Distribution of points
(a) 4 points

For sketching either energy curve with a reasonably correct shape between
1 point $x=-D$ and $x=0$, with zero and maximum values at the correct locations
For sketching two curves from $x=-D$ to $x=0$ with shapes and values such that
1 point
the total energy is constant (even if the curves are incorrect)
For sketching potential energy equal to zero from $x=0$ to $x=3 D$
For sketching kinetic energy as a linear function from its maximum value at $x=0$ to zero at $x=3 D$
(b)
(i) 1 point

For identifying that the student is correct that the block will have more energy when it leaves the spring
(ii) 1 point

For identifying that the student is incorrect about the new final position of the
1 point

AP ${ }^{\circledR}$ PHYSICS 1 2015 SCORING GUIDELINES

Question 3 (continued)

Distribution of points

(c) 3 points

For indicating that the final energy in the spring (which becomes the mechanical
1 point energy of the block as it reaches the rough track) is four times the original energy in the spring
For indicating that the frictional force remains the same
For equating the initial energy in the spring to an expression that shows that the energy dissipated by friction is proportional to the distance the block slides down the rough track
Example:
$U_{1}=\frac{1}{2} k D^{2}$ and $U_{2}=\frac{1}{2} k(2 D)^{2}$ so $U_{2}=4 U_{1}$
$W_{1}=\mu m g(3 D)$ and $W_{2}=\mu m g \Delta x_{2}$
$W_{1}=U_{1}$ and $W_{2}=U_{2}=4 U_{1}=4 W_{1}$
$\mu m g \Delta x_{2}=4(\mu m g(3 D))$
$\Delta x_{2}=4(3 D)=12 D$
(d) 3 points

For indicating that the student's correct reasoning that the block has more energy in the second situation is expressed by the calculations comparing the initial energy in the spring
For indicating that the student's correct reasoning that the block will slide farther is expressed by an equation that indicates that the work done by friction to stop the block in the second situation is some factor greater than the work done in the first situation
For indicating that the student's incorrect reasoning that energy scales linearly with the spring's compression is corrected by the expression for the initial energy of the spring

AP ${ }^{\circledR}$ PHYSICS 1 2015 SCORING GUIDELINES

Question 4

7 points total

Distribution of points

(a) 1 point

For sketching only one force pointing straight down from each sphere and
1 point indicating that this force represents the force of gravity
(b) 1 point

For sketching a horizontal line at zero velocity for sphere A, and sketching a
1 point
horizontal line at some non-zero velocity for sphere B
(c) 5 points

For indicating that the difference in horizontal motion does not affect the vertical
1 point motion of the spheres
For indicating that both spheres start with the same vertical velocity
1 point
For indicating that both spheres have the same vertical acceleration
1 point
For indicating that falling the same height would take the same time
1 point
For no incorrect or irrelevant statements
1 point

AP ${ }^{\circledR}$ PHYSICS 1 2015 SCORING GUIDELINES

Question 5

7 points total

Distribution of points

(a) 3 points

For reasoning that since the strings all have the same length, and since the wavelength of the fundamental depends on the length, all four waves have the same wavelength (e.g., $\lambda_{1}=2 L$)
For reasoning that since the wavelengths are all the same, different frequencies correspond to different velocities of the waves on the strings
For reasoning that all the string tensions are the same due to the same mass M of each block, and therefore the linear mass densities must be different for different velocities since $v=\sqrt{F_{T} /(m / L)}$ (or since the vertical component of the tension will result in different vertical accelerations for strings with different masses)
Note: Responses may refer to the physical differences between the strings in a variety of ways, e.g., different linear mass density, different total mass, different thicknesses of the same material
(b) 2 points

For combining $v=f \lambda$ with $v=\sqrt{F_{T} /(m / L)}$ (or referring to such an equation written in part (a))
For indicating how the equation leads to the conclusion that frequency would not be proportional to the inverse of the linear mass density
(c) 2 points

Side View
For any indication of the second harmonic on the string, or a wave drawn such that $\lambda_{2}=L$.
For points which are at the antinodes of the second harmonic, or at the antinodes

1 point

1 point of any standing wave drawn on the string
Notes:
Full credit is earned for having two points that are located one fourth the length of the string and three fourths the length of the string from the oscillator.
One earned point is deducted for each incorrect point marked on the figure

